Please rotate your device to landscape mode for a better experience.
Connexion

CLEVELAND Monsters
GP: 6 | W: 2 | L: 4
GF: 16 | GA: 25 | PP%: 11.11% | PK%: 66.67%
DG: Jonathan Brisebois | Morale : 62 | Moyenne d’équipe : 62

Centre de jeu
HERSHEY Bears
7-6-0, 14pts
2
FINAL
3 CLEVELAND Monsters
2-4-0, 4pts
Team Stats
L3SéquenceL1
5-1-0Fiche domicile2-1-0
2-5-0Fiche domicile0-3-0
5-4-1Derniers 10 matchs2-3-1
3.69Buts par match 2.67
3.31Buts contre par match 4.17
34.78%Pourcentage en avantage numérique11.11%
72.50%Pourcentage en désavantage numérique66.67%
CLEVELAND Monsters
2-4-0, 4pts
2
FINAL
6 HERSHEY Bears
7-6-0, 14pts
Team Stats
L1SéquenceL3
2-1-0Fiche domicile5-1-0
0-3-0Fiche domicile2-5-0
2-3-1Derniers 10 matchs5-4-1
2.67Buts par match 3.69
4.17Buts contre par match 3.31
11.11%Pourcentage en avantage numérique34.78%
66.67%Pourcentage en désavantage numérique72.50%
Meneurs d'équipe
David GustafssonButs
David Gustafsson
4
David GustafssonPasses
David Gustafsson
4
David GustafssonPoints
David Gustafsson
8
Michael KarowPlus/Moins
Michael Karow
2
Victoires
Will Cranley
1
Samuel ErssonPourcentage d’arrêts
Samuel Ersson
0.905

Statistiques d’équipe
Buts pour
16
2.67 GFG
Tirs pour
203
33.83 Avg
Pourcentage en avantage numérique
11.1%
2 GF
Début de zone offensive
38.6%
Buts contre
25
4.17 GAA
Tirs contre
204
34.00 Avg
Pourcentage en désavantage numérique
66.7%%
3 GA
Début de la zone défensive
32.2%
Informations de l'équipe

Directeur généralJonathan Brisebois
EntraîneurJay Woodcroft
DivisionNord
ConférenceEST
Capitaine
Assistant #1Tanner Kero
Assistant #2Cale Fleury


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro28
Équipe Mineure18
Limite contact 46 / 80
Espoirs26


Historique d'équipe

Saison actuelle2-4
Historique222-93-21 (0.661%)
Apparitions en séries éliminatoires 2
Historique en séries éliminatoires (W-L)24 - 16 (0.600%)
Coupe Stanley1


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1David GustafssonXX100.0067428473827775687664626968675806867X0243918,500$
2Tanner Kero (A)XX100.0059427169627271645163576364665708663X0322852,500$
3David KaseXX100.0055359562667273636161616064676508663X0271852,500$
4Brett SeneyXX100.0053486272536968665366625766575008562X0282852,500$
5Elmer Soderblom (R)XX100.00694075608369636542616062625150085620232878,333$
6Nikita Nesterenko (R)X100.00614270686971636553616061645050085620231925,000$
7Jeffrey Truchon-VielX100.0059657258748789575356565558656308661X0271750,000$
8Joona LuotoXX100.0062407064656363624157585961525007759X0271758,000$
9Aidan DudasX100.0053436871536564634260565363515008659X0241865,000$
10Emil Heineman (R)X100.00624169666461596142575759615050086590232897,500$
11Jacob Melanson (R)X100.00634858636462616141585659595050086590212826,111$
12Jacob PerreaultX100.0060476265656260604257545360505008657X0223950,000$
13Pierre-Olivier JosephX100.0071487975778277724070657371625408671X02531,045,000$
14Jayden Struble (R)X100.00735065717674676640626069665250085660231750,000$
15Cale Fleury (A)X100.0068437269717266664063586965565207165X0261800,000$
16Michael KarowX100.0065486466666563604057536860535008662X0262852,500$
17William Trudeau (R)X100.00615062706462616440615865645050086620222856,667$
18Max Szuber (R)X100.00664264666563626340625866625050086620222859,167$
Rayé
1Trevor Kuntar (R)X100.00625556636365636251575758615150019580231867,500$
2Luke StevensX100.0062406858676260544053535755535002056X0271852,500$
3Jake BischoffX100.0055426765636968634060566361585402061X0301750,000$
4Adam Ginning (R)X100.0064485966676463624059546461525002061X0241883,750$
5Nolan Allan (R)X100.00624263656363626240585764615050020600222825,000$
6Alex GreenX100.0058466765656462594052536059545002058X0262852,500$
7Brendan GuhleX100.0053485256565653534050515353525002053X0271852,500$
MOYENNE D’ÉQUIPE100.0062456866676865624559576262555206661
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Samuel Ersson100.00817778778381788080807756510857202541,375,000$
2Will Cranley100.006777828366656766656766596108564X0223926,000$
Rayé
1Rasmus Korhonen (R)100.006568668864636564636564606302261X0221750,000$
MOYENNE D’ÉQUIPE100.007174758371707070697169585806466
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Jay Woodcroft8679877671731CAN4721,000,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1David GustafssonCLEVELAND Monsters (CLB)C/LW6448010106112671415.38%411819.68000011000001049.07%16183001.3600020100
2Elmer SoderblomCLEVELAND Monsters (CLB)C/LW6336-40014122861610.71%211419.13112417000070033.01%10313001.0500000020
3Emil HeinemanCLEVELAND Monsters (CLB)LW632504085135723.08%110818.030000000000010%522000.9200000000
4Brett SeneyCLEVELAND Monsters (CLB)C/LW6134-20035194165.26%19515.87112617000030041.94%3160000.8400000000
5David KaseCLEVELAND Monsters (CLB)LW/RW6123-40046206135.00%311218.69011217000340020.00%554000.5400000000
6Pierre-Olivier JosephCLEVELAND Monsters (CLB)D6123-600811201365.00%915926.5201141800000100%063000.3800000010
7Jayden StrubleCLEVELAND Monsters (CLB)D6033-320979540%512520.9100001600006000%076000.4800000001
8Nikita NesterenkoCLEVELAND Monsters (CLB)C6123-2006483512.50%06510.8800001000020031.82%2220000.9200000000
9Tanner KeroCLEVELAND Monsters (CLB)C/LW6112-200137841212.50%37111.9800001000000050.00%210000.5600000000
10William TrudeauCLEVELAND Monsters (CLB)D6022-355775020%610818.010000000008000%028000.3700001000
11Joona LuotoCLEVELAND Monsters (CLB)LW/RW60110115197125120%211919.99000011000000037.50%833000.1700001000
12Jeffrey Truchon-VielCLEVELAND Monsters (CLB)LW6011-4001074340%110717.98000011000070040.00%513000.1900000000
13Aidan DudasCLEVELAND Monsters (CLB)LW6101-2001150620.00%0559.30000000000000100.00%110000.3600000000
14Max SzuberCLEVELAND Monsters (CLB)D6011100673510%610217.1500011100004000%005000.1900000000
15Cale FleuryCLEVELAND Monsters (CLB)D6000-7208128250%1315425.7100011100003000%01500000000000
16Jacob PerreaultCLEVELAND Monsters (CLB)RW6000-2175414230%3549.060000000000000%00100000001000
17Michael KarowCLEVELAND Monsters (CLB)D6000200546120%48814.720000100002000%01200000000000
18Jacob MelansonCLEVELAND Monsters (CLB)RW6000-2201175100%17111.9700001000000050.00%20200000000000
Statistiques d’équipe totales ou en moyenne108162743-405325142121203721287.88%64183316.98246181500003492141.16%3454750000.4700023131
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Will CranleyCLEVELAND Monsters (CLB)51210.8584.70217001712067000042000
2Samuel ErssonCLEVELAND Monsters (CLB)41100.9053.181510088445100024100
Statistiques d’équipe totales ou en moyenne92310.8774.07369002520411210066100


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Adam GinningCLEVELAND Monsters (CLB)D242000-01-13SWEYes205 Lbs6 ft4NoYesN/ANoNo1FalseFalsePro & Farm883,750$18,036$0$0$No---------------------------
Aidan DudasCLEVELAND Monsters (CLB)LW242000-06-15CANNo161 Lbs5 ft8NoYesN/ANoNo1FalseFalsePro & Farm865,000$17,653$0$0$No---------------------------Lien NHL
Alex GreenCLEVELAND Monsters (CLB)D261998-06-18USANo197 Lbs6 ft2NoYesN/ANoNo2FalseFalsePro & Farm852,500$17,398$0$0$No852,500$--------852,500$--------No--------Lien NHL
Brendan GuhleCLEVELAND Monsters (CLB)D271997-07-29CANNo197 Lbs6 ft2NoYesN/ANoNo12024-11-17FalseFalsePro & Farm852,500$17,398$0$0$No---------------------------Lien NHL
Brett SeneyCLEVELAND Monsters (CLB)C/LW281996-02-28CANNo167 Lbs5 ft9NoYesN/ANoNo2FalseFalsePro & Farm852,500$17,398$0$0$No852,500$--------852,500$--------No--------Lien NHL
Cale FleuryCLEVELAND Monsters (CLB)D261998-11-19CANNo205 Lbs6 ft1NoYesN/ANoNo12024-11-17FalseFalsePro & Farm800,000$16,327$0$0$No---------------------------Lien NHL
David GustafssonCLEVELAND Monsters (CLB)C/LW242000-04-11SWENo196 Lbs6 ft2NoYesN/ANoNo32024-11-17FalseFalsePro & Farm918,500$18,745$0$0$No918,500$918,500$-------918,500$918,500$-------NoNo-------Lien NHL
David KaseCLEVELAND Monsters (CLB)LW/RW271997-01-28CZENo169 Lbs5 ft11NoYesN/ANoNo12024-11-17FalseFalsePro & Farm852,500$17,398$0$0$No---------------------------Lien
Elmer SoderblomCLEVELAND Monsters (CLB)C/LW232001-07-05SWEYes255 Lbs6 ft8NoNoN/ANoNo2FalseFalsePro & Farm878,333$17,925$0$0$No878,333$--------878,333$--------No--------
Emil HeinemanCLEVELAND Monsters (CLB)LW232001-11-16SWEYes185 Lbs6 ft1NoNoProspectNoNo2FalseFalsePro & Farm897,500$18,316$0$0$No897,500$--------897,500$--------No--------
Jacob MelansonCLEVELAND Monsters (CLB)RW212003-04-22CANYes205 Lbs6 ft1NoNoProspectNoNo22024-08-20FalseFalsePro & Farm826,111$16,859$0$0$No826,111$--------826,111$--------No--------
Jacob PerreaultCLEVELAND Monsters (CLB)RW222002-04-15CANNo196 Lbs6 ft0NoYesN/ANoNo3FalseFalsePro & Farm950,000$19,388$0$0$No950,000$950,000$-------950,000$950,000$-------NoNo-------Lien NHL
Jake BischoffCLEVELAND Monsters (CLB)D301994-07-25USANo195 Lbs6 ft1NoYesN/ANoNo1FalseFalsePro & Farm750,000$15,306$0$0$No---------------------------
Jayden StrubleCLEVELAND Monsters (CLB)D232001-09-08USAYes202 Lbs6 ft0NoNoProspectNoNo12024-09-16FalseFalsePro & Farm750,000$15,306$0$0$No---------------------------
Jeffrey Truchon-VielCLEVELAND Monsters (CLB)LW271997-01-28CANNo197 Lbs6 ft0NoYesN/ANoNo1FalseFalsePro & Farm750,000$15,306$0$0$No---------------------------Lien
Joona LuotoCLEVELAND Monsters (CLB)LW/RW271997-09-26FINNo201 Lbs6 ft3NoYesN/ANoNo1FalseFalsePro & Farm758,000$15,469$0$0$No---------------------------
Luke StevensCLEVELAND Monsters (CLB)LW271997-02-11USANo207 Lbs6 ft5NoYesN/ANoNo12024-11-17FalseFalsePro & Farm852,500$17,398$0$0$No---------------------------
Max SzuberCLEVELAND Monsters (CLB)D222002-08-25POLYes203 Lbs6 ft3NoNoProspectNoNo22024-08-20FalseFalsePro & Farm859,167$17,534$0$0$No859,167$--------859,167$--------No--------
Michael KarowCLEVELAND Monsters (CLB)D261998-12-18USANo209 Lbs6 ft2NoYesN/ANoNo2FalseFalsePro & Farm852,500$17,398$0$0$No852,500$--------852,500$--------No--------Lien NHL
Nikita NesterenkoCLEVELAND Monsters (CLB)C232001-09-10USAYes194 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm925,000$18,878$0$0$No---------------------------
Nolan AllanCLEVELAND Monsters (CLB)D222002-04-28CANYes194 Lbs6 ft2NoNoProspectNoNo22024-08-20FalseFalsePro & Farm825,000$16,837$0$0$No825,000$--------825,000$--------No--------
Pierre-Olivier JosephCLEVELAND Monsters (CLB)D251999-07-01CANNo185 Lbs6 ft2NoYesN/ANoNo32024-11-17FalseFalsePro & Farm1,045,000$21,327$0$0$No1,045,000$1,045,000$-------1,045,000$1,045,000$-------NoNo-------Lien NHL
Rasmus KorhonenCLEVELAND Monsters (CLB)G222002-10-22FINYes194 Lbs6 ft5NoYesN/ANoNo1FalseFalsePro & Farm750,000$15,306$0$0$No---------------------------Lien NHL
Samuel ErssonCLEVELAND Monsters (CLB)G251999-10-20SWENo194 Lbs6 ft3NoNoN/ANoNo4FalseFalsePro & Farm1,375,000$28,061$0$0$No1,375,000$1,375,000$1,375,000$------1,375,000$1,375,000$1,375,000$------NoNoNo------Lien NHL
Tanner KeroCLEVELAND Monsters (CLB)C/LW321992-07-24USANo185 Lbs6 ft0NoYesFree AgentNoNo22024-01-21FalseFalsePro & Farm852,500$17,398$0$0$No852,500$--------852,500$--------No--------Lien NHL
Trevor KuntarCLEVELAND Monsters (CLB)C232001-06-20USAYes200 Lbs6 ft0NoNoProspectNoNo12024-08-20FalseFalsePro & Farm867,500$17,704$0$0$No---------------------------
Will CranleyCLEVELAND Monsters (CLB)G222002-02-26CANNo183 Lbs6 ft4NoYesN/ANoNo3FalseFalsePro & Farm926,000$18,898$0$0$No926,000$926,000$-------926,000$926,000$-------NoNo-------Lien
William TrudeauCLEVELAND Monsters (CLB)D222002-10-11CANYes190 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm856,667$17,483$0$0$No856,667$--------856,667$--------No--------
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2824.75195 Lbs6 ft21.75872,287$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Emil HeinemanDavid GustafssonJoona Luoto40023
2Jeffrey Truchon-VielElmer SoderblomDavid Kase30032
3Tanner KeroBrett SeneyJacob Melanson20041
4Aidan DudasNikita NesterenkoJacob Perreault10131
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Pierre-Olivier JosephCale Fleury40032
2Jayden StrubleWilliam Trudeau30041
3Max SzuberMichael Karow20041
4Pierre-Olivier JosephCale Fleury10023
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Brett SeneyElmer SoderblomDavid Kase60005
2Jeffrey Truchon-VielDavid GustafssonJoona Luoto40005
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Pierre-Olivier JosephJayden Struble60014
2Max SzuberCale Fleury40014
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Elmer SoderblomJeffrey Truchon-Viel60041
2Nikita NesterenkoDavid Kase40041
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jayden StrubleWilliam Trudeau60041
2Max SzuberCale Fleury40041
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Brett Seney60050Pierre-Olivier JosephJayden Struble60050
2Emil Heineman40050Max SzuberCale Fleury40050
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1David GustafssonEmil Heineman60023
2Elmer SoderblomTanner Kero40032
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Pierre-Olivier JosephCale Fleury60032
2Jayden StrubleWilliam Trudeau40032
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Emil HeinemanDavid GustafssonElmer SoderblomPierre-Olivier JosephJayden Struble
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Emil HeinemanDavid GustafssonElmer SoderblomPierre-Olivier JosephJayden Struble
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Brett Seney, Nikita Nesterenko, Joona LuotoBrett Seney, Nikita NesterenkoBrett Seney
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Max Szuber, Michael Karow, William TrudeauMax SzuberMichael Karow, William Trudeau
Tirs de pénalité
Elmer Soderblom, David Kase, David Gustafsson, Nikita Nesterenko, Tanner Kero
Gardien
#1 : Samuel Ersson, #2 : Will Cranley


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1HERSHEY Bears624000001625-93210000088030300000817-940.3331627430042822037145816204645314218211.11%9366.67%05713342.86%4411139.64%4110140.59%130731255511457
Total624000001625-93210000088030300000817-940.3331627430042822037145816204645314218211.11%9366.67%05713342.86%4411139.64%4110140.59%130731255511457
_Since Last GM Reset624000001625-93210000088030300000817-940.3331627430042822037145816204645314218211.11%9366.67%05713342.86%4411139.64%4110140.59%130731255511457
_Vs Conference624000001625-93210000088030300000817-940.3331627430042822037145816204645314218211.11%9366.67%05713342.86%4411139.64%4110140.59%130731255511457
_Vs Division600000001625-93000000088030000000817-900.0001627430042822037145816204645314218211.11%9366.67%05713342.86%4411139.64%4110140.59%130731255511457

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
64L1162743203204645314200
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
62400001625
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
321000088
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
3030000817
Derniers 10 matchs
WLOTWOTL SOWSOL
230100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
18211.11%9366.67%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
71458164282
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
5713342.86%4411139.64%4110140.59%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
130731255511457


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
11HERSHEY Bears2CLEVELAND Monsters3WXSommaire du match
39HERSHEY Bears4CLEVELAND Monsters2LSommaire du match
517CLEVELAND Monsters2HERSHEY Bears6LSommaire du match
725CLEVELAND Monsters4HERSHEY Bears5LXSommaire du match
933HERSHEY Bears2CLEVELAND Monsters3WXSommaire du match
1141CLEVELAND Monsters2HERSHEY Bears6LSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
33 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
0$ 2,442,403$ 2,442,403$ 1,000,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 1 0$ 0$




CLEVELAND Monsters Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Pierre-Olivier Joseph2729434644037222245642970613.31%332652323.9831376820003351160%31.3502
2Ryan Poehling21014524038528392458546107813.45%57467222.251636521024041616860.94%131.6525
3Brett Seney3321592023612518532747495016.74%66500915.0924335762112315453.36%91.4413
4David Gustafsson2881651833482025832759793617.63%63493017.12153146802132017561.20%141.41111
5Cale Fleury3215926832738716256235956010.54%329698921.7816284415317841120%10.9400

CLEVELAND Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Will Cranley141833790.8883.1376154839735448361630.71421
2Samuel Ersson124724260.8912.797003235325297423660.84238
3Casey DeSmith74611200.9141.93441041614216450201.0009
4Gilles Senn106210.8783.74529013327002000
5Rasmus Korhonen140010.9122.58395001719300000

CLEVELAND Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
1482611403130728175553413070211036783284413170102036192269135728135720850174221911096514116461694178227191557335015451352820.74%1462086.30%41709259565.86%1206206858.32%1128164268.70%264321101391444909506
157233290351139623016636181202400220112108361517011111761185880396732112838194110885282489092399719204257633113571633923.93%1473774.83%21227222755.10%1094212851.41%688131652.28%191614041519477909472
161065536052624463241225329180204022416064532618032222221645813644679312396216914212414345511071111120267285888875324643078828.66%3307278.18%92094353459.25%1798318956.38%1035180157.47%2741195023147361356697
177247140322442820222636238001222109811236246031022181041141104287051133031031871337223664577980335185464067416672147735.98%1494867.79%5685142348.14%635142344.62%622123550.36%158392314486481324657
Total Saison régulière332196930141012719989311067166100450667210214535681669648084559774784994611998358755859308886304543213656428845074784148866926772108703381923228.33%77217777.07%205715977958.44%4733880853.74%3473599457.94%888463886674230644992334
Séries éliminatoires
142116500000925339111100000051203110550000041338329217026214353123388727330127439640185153425501938.00%551670.91%052086560.12%37369453.75%20135856.15%557403480152276142
161367000004345-2615000002229-775200000211651243771200014171204201411351222239111283304331133.33%37781.08%123647449.79%21041850.24%11621154.98%3502452959518092
17624000001625-93210000088030300000817-941627430042822037145816204645314218211.11%9366.67%05713342.86%4411139.64%4110140.59%130731255511457
Total Séries éliminatoires4024160000015112328201460000081572420101000000706644815127442514535043515104854814776712353612898711013231.68%1012674.26%1813147255.23%627122351.27%35867053.43%1037723900303570292

CLEVELAND Monsters Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Ryan Poehling341825431616758413713.14%1576822.6149131901114158.46%11.1200
2Pierre-Olivier Joseph409243322142698510.59%51103225.815813330110200%00.6400
3Dominik Kahun2116163211284511414.04%550824.203362000001051.56%11.2600
4Jake Evans21101828131052591119.01%539518.823581800013055.85%01.4200
5Cale Fleury4011172821667516217.74%6197124.30628200000000%10.5800

CLEVELAND Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Casey DeSmith2116220.9212.3212691544962100000
2Samuel Ersson125320.8883.306000033294452000
3Will Cranley123420.8773.765910037301670000
4Gilles Senn10100.8334.19430031801100